Kinematics C° Dynamics of Linkages Lecture 13: 3 Positions Analytical Synthesis

3-Pasition Mation Generation with Fixed Pivots

Design a four bar linkage that will mave a line on its coupler link such that a point P on that line will be first at $\mathrm{PI}, \mathrm{P} 2$ and later P3 and will Also rotate the line through an angle α_{2} and then α_{3} assuming fixed pivats \bar{D}_{2} and C_{4}

|st Dyade: WZ

Define the following variables:

$w=$ length link2
$\boldsymbol{\theta}=$ initial angle of link2
$\boldsymbol{\beta}_{2}=$ |st change in angle of link2
$\boldsymbol{\beta}_{3}=$ 2nd $^{\text {nd }}$ change in angle of link2
$\boldsymbol{z}=$ distance from \boldsymbol{A} and \boldsymbol{P}
$\Phi=$ initial angle of link z
$\boldsymbol{\alpha}_{2}={ }^{\text {st }}$ change in angle of link \boldsymbol{z}
$\boldsymbol{\alpha}_{3}=2^{\text {nd }}$ change in angle of link \boldsymbol{z}
$\boldsymbol{p}_{21}=$ distance from point $\boldsymbol{P}_{\boldsymbol{f}}$ to \boldsymbol{P}_{2}
$\boldsymbol{\rho}_{31}=$ distance from point $\boldsymbol{P}_{\boldsymbol{f}}$ to \boldsymbol{P}_{3}
$\boldsymbol{R}_{f}=$ position vector $\mathrm{D}_{2} \mathrm{P}_{1}$
$\boldsymbol{R}_{2}=$ position vector $\mathrm{D}_{2} \mathrm{P}_{2}$
$R_{3}=$ position vector $\mathrm{D}_{2} \mathrm{P}_{3}$
$\xi_{1}=$ orientation angle of $\boldsymbol{R}_{\text {l }}$
$\xi_{2}=$ orientation angle of R_{2}
$\xi_{3}=$ orientation angle of R_{3}
$R_{1}=$ magnitude of $\boldsymbol{R}_{\boldsymbol{t}}$
$R_{2}=$ magnitude of $\boldsymbol{R}_{\boldsymbol{z}}$
$R_{3}=$ magnitude of \boldsymbol{R}_{3}
$\boldsymbol{\delta}_{2}=$ arientation angle of line from $\boldsymbol{P}_{\boldsymbol{f}}$ to \boldsymbol{P}_{2}
$\delta_{3}=$ orientation angle of line from $\boldsymbol{P}_{\text {to }} \boldsymbol{P}_{3}$

|st Dyade: WZ - Solution

Write the Vectar loup of each precision position

$$
\begin{aligned}
& W_{1}+Z_{1}=R_{1} \\
& W_{2}+Z_{2}=R_{2} \\
& W_{3}+Z_{3}=R_{3}
\end{aligned}
$$

Substitute

$$
\begin{aligned}
& W_{1}=w e^{j \theta}, W_{2}=w e^{j\left(\theta+\beta_{2}\right)}=W_{1} e^{j \beta_{2}} \\
& Z_{1}=z e^{j \phi}, Z_{2}=z e^{j\left(\phi+\alpha_{2}\right)}=Z_{1} e^{j \alpha_{2}}
\end{aligned}
$$

|st Dyade: WZ - Solution

Resultant system of equations
$W_{1}+Z_{1} \quad=R_{1}$
$W_{1} e^{j \beta_{2}}+Z_{1} e^{j \alpha_{2}}=R_{2}$
$W_{1} e^{j \beta_{3}}+Z_{1} e^{j \alpha_{3}}=R_{3}$
Solution: determinant of the below matrix is zero
$\left[\begin{array}{ccc}1 & 1 & R_{1} \\ e^{j \beta_{2}} & e^{j \alpha_{2}} & R_{2} \\ e^{j \beta_{3}} & e^{j \alpha_{3}} & R_{3}\end{array}\right]$

|st Dyade: WZ - Solution

The determinant can be simplified to $A+B e^{j \beta_{2}}+C e^{j \beta_{3}}=0$

Where

$$
\begin{aligned}
& A=R_{3} e^{j \alpha_{2}}-R_{2} e^{j \alpha_{3}} \\
& B=R_{1} e^{j \alpha_{3}}-R_{3} \\
& C=R_{2} \quad-R_{1} e^{j \alpha_{2}}
\end{aligned}
$$

|st Dyade: WZ - Solution

Solving the real and imaginary part of the equation we get
$\beta_{3}=2 \arctan \left(\frac{K_{2} \pm \sqrt{K_{1}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{1}+K_{3}}\right)$
$\beta_{2}=\arctan \left[\frac{-\left(A_{3} \sin \beta_{3}+A_{2} \cos \beta_{3}+A_{4}\right)}{-\left(A_{5} \sin \beta_{3}+A_{3} \cos \beta_{3}+A_{6}\right)}\right]$

Ignore the solution where $\beta_{2}=\alpha_{2}$ and $\beta_{3}=\alpha_{3}$

|st Dyade: WZ - Solution Constants

$K_{1}=A_{2} A_{4}+A_{3} A_{6}$
$K_{2}=A_{3} A_{4}+A_{5} A_{6}$
$K_{3}=\frac{\left(A_{1}^{2}-A_{2}^{2}-A_{3}^{2}-A_{4}^{2}-A_{6}^{2}\right)}{2}$
$A_{1}=-C_{3}^{2}-C_{4}^{2}$
$A_{2}=C_{3} C_{6}-C_{4} C_{5}$
$A_{3}=-C_{4} C_{6}-C_{3} C_{5} \quad A_{4}=C_{2} C_{3}+C_{1} C_{4}$
$A_{5}=C_{4} C_{5}-C_{3} C_{6}$
$A_{6}=C_{1} C_{3}-C_{2} C_{4}$
$C_{1}=R_{3} \cos \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \cos \left(\alpha_{3}+\zeta_{2}\right)$
$C_{2}=R_{3} \sin \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \sin \left(\alpha_{3}+\zeta_{2}\right)$
$C_{3}=R_{1} \cos \left(\alpha_{3}+\zeta_{1}\right)-R_{3} \cos \zeta_{3}$
$C_{4}=-R_{1} \sin \left(\alpha_{3}+\zeta_{1}\right)+R_{3} \sin \zeta_{3}$
$C_{5}=R_{1} \cos \left(\alpha_{2}+\zeta_{1}\right)-R_{2} \cos \zeta_{2}$
$C_{6}=-R_{1} \sin \left(\alpha_{2}+\zeta_{1}\right)+R_{2} \sin \zeta_{2}$

|st Dyade: WZ

Use the following vector loap equation to solve for W and Z

$$
\begin{aligned}
& W_{2}+Z_{2}-P_{21}-Z_{1}-W_{1}=0 \\
& W_{3}+Z_{3}-P_{31}-Z_{1}-W_{1}=0
\end{aligned}
$$

Unknowns

$$
\begin{array}{ll}
W_{1_{x}}=w \cos \theta & Z_{1_{x}}=z \cos \phi \\
W_{1_{y}}=w \sin \theta & Z_{1_{y}}=z \sin \phi
\end{array}
$$

|st Dyade: WZ

Take the real and imaginary components of bath equations
$A W_{1_{x}}-B W_{1_{y}}+C Z_{1_{x}}-D Z_{1_{y}}=E$
$F W_{1_{x}}-G W_{1_{y}}+H Z_{1_{x}}-K Z_{1_{y}}=L$
$B W_{1_{x}}+A W_{1_{y}}+D Z_{1_{x}}+C Z_{1_{y}}=M$
$G W_{1_{x}}+F W_{1_{y}}+K Z_{1_{x}}+H Z_{1_{y}}=N$

Where

$A=\cos \beta_{2}-1 \quad B=\sin \beta_{2} \quad C=\cos \alpha_{2}-1$
$D=\sin \alpha_{2} \quad E=p_{21} \cos \delta_{2} \quad F=\cos \beta_{3}-1$
$G=\sin \beta_{3} \quad H=\cos \alpha_{3}-1 \quad K=\sin \alpha_{3}$
$L=p_{31} \cos \delta_{3} \quad M=p_{21} \sin \delta_{2} \quad N=p_{31} \sin \delta_{3}$

pst Dyade: WZ

Solve the system of equations using matrices
$\left[\begin{array}{cccc}A & -B & C & -D \\ F & -G & H & -K \\ B & A & D & C \\ G & F & K & H\end{array}\right] \times\left[\begin{array}{c}W_{1_{x}} \\ W_{1_{y}} \\ Z_{1_{x}} \\ Z_{1_{y}}\end{array}\right]=\left[\begin{array}{c}E \\ L \\ M \\ N\end{array}\right]$

The matrix solution will give the solution to vectors W and Z.
Reda the same procedure far vector $ل$ and S

Solution Summary

$\beta_{3}=2 \arctan \left(\frac{K_{2} \pm \sqrt{K_{1}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{1}+K_{3}}\right)$
$\beta_{2}=\arctan \left[\frac{-\left(A_{3} \sin \beta_{3}+A_{2} \cos \beta_{3}+A_{4}\right)}{-\left(A_{5} \sin \beta_{3}+A_{3} \cos \beta_{3}+A_{6}\right)}\right]$

$$
\left[\begin{array}{cccc}
A & -B & C & -D \\
F & -G & H & -K \\
B & A & D & C \\
G & F & K & H
\end{array}\right] \times\left[\begin{array}{c}
W_{1_{x}} \\
W_{1_{y}} \\
Z_{1_{x}} \\
Z_{1_{y}}
\end{array}\right]=\left[\begin{array}{c}
E \\
L \\
M \\
N
\end{array}\right]
$$

Example: Problem: 5-11 p. 255

Design a linkage to carry the bady in the figure below through the three positions Pl, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivats shown.

Example Solution - Step I

Determine the angle changes between precision points from the body angles given.

$$
\begin{array}{ll}
\alpha_{2}:=\theta_{P 2}-\theta_{P 1} & \alpha_{2}=-62.500 \mathrm{deg} \\
\alpha_{3}:=\theta_{P 3}-\theta_{P 1} & \alpha_{3}=-99.800 \mathrm{deg}
\end{array}
$$

Example Solution - Step 2

determine the magnitudes of $\mathbf{R}_{1}, \mathbf{R}_{2}$, and \mathbf{R}_{3} and their x and y components.

$$
\begin{array}{ll}
R_{l x}:=-O_{2 x} & R_{l x}=2.164 \\
R_{2 x}:=R_{l x}+P_{2 l x} & R_{2 x}=0.928 \\
R_{2 y}:=R_{l y}+P_{2 l y} & R_{2 y}=3.398 \\
R_{3 x}:=R_{l x}+P_{3 l x} & R_{3 x}=-0.336 \\
R_{3 y}:=R_{l y}+P_{3 l y} & R_{3 y}=4.191 \\
R_{1}:=\sqrt{R_{l x}^{2}+R_{l y}^{2}} & R_{1}=2.504 \\
R_{2}:=\sqrt{{R_{2 x}}^{2}+R_{2 y}^{2}} & R_{2}=3.522 \\
R_{3}:=\sqrt{R_{3 x}^{2}+R_{3 y}^{2}} & R_{3}=4.204
\end{array}
$$

$$
R_{I y}:=-O_{2 y}
$$

$$
R_{I y}=1.260
$$

MEE341 - Lecture 13: 3 Positions Analytical Synthesis Slide 15 of 38 LAU

Example Solution - Step 3

determine the angles that $\mathbf{R}_{1}, \mathbf{R}_{2}$, and \mathbf{R}_{3} make with the x axis.
$\zeta_{1}:=\operatorname{atan} 2\left(R_{l x}, R_{l y}\right)$
$\zeta_{1}=30.210 \mathrm{deg}$
$\zeta_{2}:=\operatorname{atan} 2\left(R_{2 x}, R_{2 y}\right)$
$\zeta_{2}=74.725 \mathrm{deg}$
$\zeta_{3}:=\operatorname{atan} 2\left(R_{3 x}, R_{3 y}\right)$
$\zeta_{3}=94.584 \mathrm{deg}$

MEE34| - Lecture 13: 3 Positions Analytical Synthesis Sirde fif of 33 LAU

Example Solution - Step 4a

Solve for β_{2} and β_{3}

$$
\begin{array}{ll}
C_{I}:=R_{3} \cdot \cos \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \cdot \cos \left(\alpha_{3}+\zeta_{2}\right) & C_{1}=0.372 \\
C_{2}:=R_{3} \cdot \sin \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \cdot \sin \left(\alpha_{3}+\zeta_{2}\right) & C_{2}=3.726 \\
C_{3}:=R_{1} \cdot \cos \left(\alpha_{3}+\zeta_{1}\right)-R_{3} \cdot \cos \left(\zeta_{3}\right) & C_{3}=1.209 \\
C_{4}:=-R_{I} \cdot \sin \left(\alpha_{3}+\zeta_{1}\right)+R_{3} \cdot \sin \left(\zeta_{3}\right) & C_{4}=6.538 \\
C_{5}:=R_{1} \cdot \cos \left(\alpha_{2}+\zeta_{1}\right)-R_{2} \cdot \cos \left(\zeta_{2}\right) & C_{5}=1.189 \\
C_{6}:=-R_{I} \cdot \sin \left(\alpha_{2}+\zeta_{1}\right)+R_{2} \cdot \sin \left(\zeta_{2}\right) & C_{6}=4.736
\end{array}
$$

MEE341 - Lecture 13: 3 Positions Analytical Synthesis Slide 17 of 33 LIAU

Example Solution - Step 4b

Solve for β_{2} and β_{3}

$A_{1}:=-C_{3}{ }^{2}-C_{4}{ }^{2}$	$A_{1}=-44.206$
$A_{2}:=C_{3} \cdot C_{6}-C_{4} \cdot C_{5}$	$A_{2}=-2.046$
$A_{3}:=-C_{4} \cdot C_{6}-C_{3} \cdot C_{5}$	$A_{3}=-32.399$
$A_{4}:=C_{2} \cdot C_{3}+C_{7} \cdot C_{4}$	$A_{4}=6.937$
$A_{5}:=C_{4} C_{5}-C_{3} \cdot C_{6}$	$A_{5}=2.046$
$A_{6}:=C_{7} C_{3}-C_{2} \cdot C_{4}$	$A_{6}=-23.911$
$K_{1}:=A_{2} \cdot A_{4}+A_{3} \cdot A_{6}$	$K_{1}=760.497$
$K_{2}:=A_{3} \cdot A_{4}+A_{5} \cdot A_{6}$	$K_{2}=-273.669$
$K_{3}:=\frac{A_{1}{ }^{2}-A_{2}{ }^{2}-A_{3}{ }^{2}-A_{4}{ }^{2}-A_{6}{ }^{2}}{2}$	$K_{3}=140.232$

MEE341 - Lecture 13: 3 Positions Analytical Synthesis

Example Solution - Step 4г

Solve for β_{2} and β_{3}

$$
\begin{aligned}
& \beta_{31}:=2 \cdot \operatorname{atan}\left(\frac{K_{2}+\sqrt{K_{1}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{l}+K_{3}}\right) \\
& \beta_{32}=2 \cdot \operatorname{atan}\left(\frac{K_{2}-\sqrt{K_{1}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{l}+K_{3}}\right)
\end{aligned}
$$

$$
\beta_{31}=60.217 \mathrm{deg}
$$

The second value is the same as α_{3}, so use the first value

$$
\begin{aligned}
& \beta_{21}:=\operatorname{acos}\left(\frac{A_{5} \cdot \sin \left(\beta_{3}\right)+A_{3} \cdot \cos \left(\beta_{3}\right)+A_{6}}{A_{1}}\right) \\
& \beta_{22}:=\operatorname{asin}\left(\frac{A_{3} \cdot \sin \left(\beta_{3}\right)+A_{2} \cdot \cos \left(\beta_{3}\right)+A_{4}}{A_{1}}\right)
\end{aligned}
$$

$$
\beta_{21}=30.143 \mathrm{deg}
$$

$$
\beta_{22}=30.143 \mathrm{deg}
$$

Since both values are the same,
$\beta_{2}:=\beta_{21}$

Example Solution - Step 5

Repeat steps 2,3, and 4 for the right-hand dyad to find γ_{1} and γ_{2}.
$R_{1 x}:=-O_{4 x}$

$$
R_{I x}=-2.190
$$

$R_{l y}:=-O_{4 y} \quad R_{l y}=1.260$
$R_{2 x}:=R_{I x}+P_{2 I x}$
$R_{2 x}=-3.426$
$R_{2 y}:=R_{l y}+P_{2 l y}$
$R_{2 y}=3.398$
$R_{3 x}:=R_{I x}+P_{31 x}$
$R_{3 x}=-4.690$
$R_{3 y}:=R_{l y}+P_{3 l y}$
$R_{3 y}=4.191$
$R_{l}:=\sqrt{{R_{l x}}^{2}+R_{l y}{ }^{2}}$
$R_{1}=2.527$
$R_{2}:=\sqrt{R_{2 x}{ }^{2}+R_{2 y}{ }^{2}}$
$R_{2}=4.825$
$R_{3}:=\sqrt{R_{3 x}{ }^{2}+R_{3 y}{ }^{2}}$
$R_{3}=6.290$

MEE34| - Lecture 13: 3 Positions Analytical Synthesis

Example Solution - Step B

determine the angles that $\mathbf{R}_{1}, \mathbf{R}_{2}$, and \mathbf{R}_{3} make with the x axis.

$$
\begin{aligned}
& \zeta_{1}:=\operatorname{atan} 2\left(R_{l x}, R_{l y}\right) \\
& \zeta_{2}:=\operatorname{atan} 2\left(R_{2 x}, R_{2 y}\right) \\
& \zeta_{3}:=\operatorname{atan} 2\left(R_{3 x}, R_{3 y}\right) \\
& \zeta_{1}=150.086 \mathrm{deg} \\
& \zeta_{2}=135.235 \mathrm{deg} \\
& \zeta_{3}=138.216 \mathrm{deg}
\end{aligned}
$$

Example Solution - Step 7a

Solve for γ_{2} and γ_{3}

$$
\begin{array}{ll}
C_{1}:=R_{3} \cdot \cos \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \cdot \cos \left(\alpha_{3}+\zeta_{2}\right) & C_{1}=-2.380 \\
C_{2}:=R_{3} \cdot \sin \left(\alpha_{2}+\zeta_{3}\right)-R_{2} \cdot \sin \left(\alpha_{3}+\zeta_{2}\right) & C_{2}=3.298 \\
C_{3}:=R_{1} \cdot \cos \left(\alpha_{3}+\zeta_{1}\right)-R_{3} \cdot \cos \left(\zeta_{3}\right) & C_{3}=6.304 \\
C_{4}:=-R_{1} \cdot \sin \left(\alpha_{3}+\zeta_{1}\right)+R_{3} \cdot \sin \left(\zeta_{3}\right) & C_{4}=2.247 \\
C_{5}:=R_{1} \cdot \cos \left(\alpha_{2}+\zeta_{1}\right)-R_{2} \cdot \cos \left(\zeta_{2}\right) & C_{5}=3.532 \\
C_{6}:=-R_{1} \cdot \sin \left(\alpha_{2}+\zeta_{1}\right)+R_{2} \cdot \sin \left(\zeta_{2}\right) & C_{6}=0.874
\end{array}
$$

Example Solution - Step 7b

$$
\begin{array}{ll}
A_{1}:=-C_{3}{ }^{2}-C_{4}{ }^{2} & A_{1}=-44.796 \\
A_{2}:=C_{3} C_{6}-C_{4} \cdot C_{5} & A_{2}=-2.431 \\
A_{3}:=-C_{4} \cdot C_{6}-C_{3} \cdot C_{5} & A_{3}=-24.233 \\
A_{4}:=C_{2} C_{3}+C_{7} \cdot C_{4} & A_{4}=15.441 \\
A_{5}:=C_{4} C_{5}-C_{3} \cdot C_{6} & A_{5}=2.431 \\
A_{6}:=C_{T} C_{3}-C_{2} \cdot C_{4} & A_{6}=-22.414 \\
K_{1}:=A_{2} A_{4}+A_{3} \cdot A_{6} & K_{1}=505.612 \\
K_{2}:=A_{3} A_{4}+A_{5} A_{6} & K_{2}=-428.679 \\
K_{3}:=\frac{A_{1}^{2}-A_{2}^{2}-A_{3}^{2}-A_{4}{ }^{2}-A_{6}{ }^{2}}{2} & K_{3}=336.363
\end{array}
$$

Example Solution - Step 7c

$$
\begin{aligned}
& \gamma_{31}:=2 \cdot \operatorname{atan}\left(\frac{K_{2}+\sqrt{K_{I}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{I}+K_{3}}\right) \\
& \gamma_{32}:=2 \cdot \operatorname{atan}\left(\frac{K_{2}-\sqrt{K_{I}^{2}+K_{2}^{2}-K_{3}^{2}}}{K_{I}+K_{3}}\right)
\end{aligned}
$$

$\gamma_{31}=19.215 \mathrm{deg}$
$\gamma_{32}=-99.800 \mathrm{deg}$

The second value is the same as α_{3}, so use the first value

$$
\begin{aligned}
& \gamma_{21}:=\operatorname{acos}\left(\frac{A_{5} \cdot \sin \left(\gamma_{3}\right)+A_{3} \cos \left(\gamma_{3}\right)+A_{6}}{A_{1}}\right) \\
& \gamma_{22}:=\operatorname{asin}\left(\frac{A_{3} \cdot \sin \left(\gamma_{3}\right)+A_{2} \cdot \cos \left(\gamma_{3}\right)+A_{4}}{A_{1}}\right)
\end{aligned}
$$

$$
\gamma_{21}=6.628 \mathrm{deg}
$$

$$
\gamma_{22}=-6.628 \mathrm{deg}
$$

Since γ_{2} is not in the first quadrant,

$$
\gamma_{2}:=\gamma_{22}
$$

Example Solution - Step 8

Solve for the linkage vectors as described on slide ill.
Start by finding the magnitudes of vectors P_{21} and P_{31} and its angles:

$$
\begin{array}{ll}
p_{21}:=\sqrt{P_{2 I x}^{2}+P_{2 l y}^{2}} & p_{21}=2.470 \\
\delta_{2}:=\operatorname{atan} 2\left(P_{2 I x}, P_{2 l y}\right) & \delta_{2}=120.033 \mathrm{deg} \\
p_{31}:=\sqrt{P_{3 I x}^{2}+P_{3 l y}^{2}} & p_{31}=3.852 \\
\delta_{3}:=\operatorname{atan} 2\left(P_{3 l x}, P_{3 l y}\right) & \delta_{3}=130.463 \mathrm{deg}
\end{array}
$$

Example Solution - Step I

Evaluate terms in the WZ coefficient matrix

$$
\begin{array}{lll}
A:=\cos \left(\beta_{2}\right)-1 & B:=\sin \left(\beta_{2}\right) & C:=\cos \left(\alpha_{2}\right)-1 \\
D:=\sin \left(\alpha_{2}\right) & E:=p_{2 I} \cdot \cos \left(\delta_{2}\right) & F:=\cos \left(\beta_{3}\right)-1 \\
G:=\sin \left(\beta_{3}\right) & H:=\cos \left(\alpha_{3}\right)-1 & N:=\sin \left(\alpha_{3}\right) \\
L:=p_{3 I} \cdot \cos \left(\delta_{3}\right) & M:=p_{2 r} \cdot \sin \left(\delta_{2}\right) & N:=p_{31} \cdot \sin \left(\delta_{3}\right) \\
A A:=\left(\begin{array}{cccc}
A & -B & C & -D \\
F & -G & H & -K \\
B & A & D & C \\
G & F & K & H
\end{array}\right) & C C:=\left(\begin{array}{c}
E \\
L \\
M \\
N
\end{array}\right) & \left(\begin{array}{c}
W l x \\
W l y \\
Z l x \\
Z l y
\end{array}\right):=A A^{-1} \cdot C C
\end{array}
$$

Example Solution - Step 10

The components of the W and Z vectors are
$W 1 x=2.915$

$$
W l y=1.702
$$

$$
Z 1 x=-0.751
$$

$$
Z 1 y=-0.442
$$

And the length of link 2 is

$$
w:=\sqrt{W l x^{2}+W l y^{2}} \quad w=3.376
$$

Example Solution - Step II

Evaluate terms in the US coefficient matrix

$$
\begin{array}{lll}
A^{\prime}:=\cos \left(\gamma_{2}\right)-1 & B^{\prime}:=\sin \left(\gamma_{2}\right) & C:=\cos \left(\alpha_{2}\right)-1 \\
D:=\sin \left(\alpha_{2}\right) & E:=p_{2 I} \cdot \cos \left(\delta_{2}\right) & F^{\prime}:=\cos \left(\gamma_{3}\right)-1 \\
G^{\prime}:=\sin \left(\gamma_{3}\right) & H:=\cos \left(\alpha_{3}\right)-1 & K:=\sin \left(\alpha_{3}\right) \\
L:=p_{3 I} \cdot \cos \left(\delta_{3}\right) & M:=p_{2 I} \cdot \sin \left(\delta_{2}\right) & N:=p_{3 I} \cdot \sin \left(\delta_{3}\right) \\
A A:=\left(\begin{array}{cccc}
A^{\prime} & -B^{\prime} & C & -D \\
F^{\prime} & -G^{\prime} & H & -K \\
B^{\prime} & A^{\prime} & D & C \\
G^{\prime} & F^{\prime} & K & H
\end{array}\right) & C C:=\left(\begin{array}{c}
E \\
L \\
M \\
N
\end{array}\right)
\end{array}
$$

Example Solution - Step 12

The components of the $ل$ and S vectors are

Ulx $=-1.371 \quad$ Uly $=3.634 \quad$ Slx $=-0.819 \quad$ Sly $=-2.374$
And the length of link 4 is

$$
u:=\sqrt{U 1 x^{2}+U l y^{2}} \quad u=3.884
$$

Example Solution - Step 13

Solving far links 3 and I

$$
\begin{array}{cl}
\qquad V l x:=Z l x-S l x & V l x=0.068 \\
V l y:=Z l y-S l y & V l y=1.932 \\
\text { The length of link } 3 \text { is: } \quad v:=\sqrt{V l x^{2}+V 1 y^{2}} & v=1.933
\end{array}
$$

$$
\begin{array}{ll}
G l x:=W l x+V l x-U l x & G l x=4.354 \\
G l y:=W l y+V l y-U l y & G l y=-4.441 \times 10^{-15}
\end{array}
$$

The length of link 1 is: $\quad g:=\sqrt{G l x^{2}+G l y^{2}} \quad g=4.354$

Example Solution - Step 14

Check the location of the fixed pivat points with respect to the glabal frame using the calculated vectors WI, ZI, UI, and SI

$$
\begin{array}{ll}
O 2 x=-Z l x-\text { Wlx } & O 2 x=-2.164 \\
O 2 y=-Z l y-\text { Wly } & O 2 y=-1.260 \\
O 4 x=- \text { Slx } x-\text { Ulx } & O 4 x=2.190 \\
O 4 y=- \text { Sly } y-\text { Uly } & O 4 y=-1.260
\end{array}
$$

Example Solution - Step 15

Determine the location of the coupler point with respect to point A and line $A B$.

$$
\begin{array}{lll}
\text { Distance from } A \text { to } P & z:=\sqrt{Z l x^{2}+Z l y^{2}} & z=0.871 \quad r_{P}:=z \\
\text { Angle } B A P\left(\delta_{\mathrm{p}}\right) & s:=\sqrt{S 1 x^{2}+S l y^{2}} & s=2.511 \\
\psi:=\operatorname{atan} 2(S l x, S l y) & \psi=250.963 \mathrm{deg} \\
& \phi:=\operatorname{atan} 2(Z l x, Z l y) & \phi=210.445 \mathrm{deg} \\
\theta_{3}:=\operatorname{atan} 2(z \cdot \cos (\phi)-s \cdot \cos (\psi), z \cdot \sin (\phi)-s \cdot \sin (\psi)) \\
\theta_{3}=87.994 \operatorname{deg} & \\
\delta_{p}:=\phi-\theta_{3} & \delta_{p}=122.451 \mathrm{deg}
\end{array}
$$

Example Solution - Summary

DESIGN SUMMARY

Link 1:	$g=4.354$
Link 2:	$w=3.376$
Link 3:	$v=1.933$
Link 4:	$u=3.884$
Coupler point:	$r_{P}=0.871 \quad \delta_{p}=122.451 \mathrm{deg}$

VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O_{2} and O_{4} give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

