Kinematics & Dynamics of Linkages

Lecture 13: 3 Positions Analytical Synthesis

Spring 2018

3-Position Motion Generation with Fixed Pivots

Design a four bar linkage that will move a line on its coupler link such that a point P on that line will be first at P1, P2 and later P3 and will Also rotate the line through an angle α_2 and then α_3 assuming fixed pivots 0_7 and O_4

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 2 of 33

Define the following variables: *w* = length **link2** $\boldsymbol{\Theta}$ = initial angle of **link2** $\beta_7 = 1^{st}$ change in angle of **link2** $\beta_3 = 2^{nd}$ change in angle of link2 z = distance from A and P Φ = initial angle of link z $\alpha_2 = 1^{\text{st}}$ change in angle of **link** z $\alpha_3 = 2^{nd}$ change in angle of link z p_{21} = distance from point P_1 to P_2 p_{31} = distance from point P_1 to P_3 δ_2 = orientation angle of line from P_1 to P_2 δ_3 = orientation angle of line from P_1 to P_3

- $R_{I} = \text{position vector } \mathbf{D}_{2}\mathbf{P}_{1}$ $R_{Z} = \text{position vector } \mathbf{D}_{2}\mathbf{P}_{2}$ $R_{3} = \text{position vector } \mathbf{D}_{2}\mathbf{P}_{3}$ $\boldsymbol{\xi}_{1} = \text{orientation angle of } R_{I}$ $\boldsymbol{\xi}_{2} = \text{orientation angle of } R_{Z}$ $\boldsymbol{\xi}_{3} = \text{orientation angle of } R_{J}$ $R_{1} = \text{magnitude of } R_{I}$ $R_{2} = \text{magnitude of } R_{Z}$
 - R_3 = magnitude of R_3

<u>Slide 3 of 33</u>

Write the Vector loop of each precision position

$$W_1 + Z_1 = R_1$$
$$W_2 + Z_2 = R_2$$
$$W_3 + Z_3 = R_3$$

Substitute

$$W_{1} = we^{j\theta}, W_{2} = we^{j(\theta + \beta_{2})} = W_{1}e^{j\beta_{2}}$$
$$Z_{1} = ze^{j\phi}, Z_{2} = ze^{j(\phi + \alpha_{2})} = Z_{1}e^{j\alpha_{2}}$$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

 δ_3 iY δ_2 P_1 \mathbf{P}_{21} P_2 **P**₃₁ Z P_3 \mathbf{R}_2 \mathbf{Z}_{2} \mathbf{R}_1 α_2 Ra \mathbf{Z}_3 W A_2 ζ3 α_3 W₂ ζ_2 Å3 ζ1 β_2 W3 β_3 02

Slide 4 of 33

Resultant system of equations

 $W_1 + Z_1 = R_1$ $W_1 e^{j\beta_2} + Z_1 e^{j\alpha_2} = R_2$ $W_1 e^{j\beta_3} + Z_1 e^{j\alpha_3} = R_3$

Solution: determinant of the below matrix is zero

$$egin{bmatrix} 1 & 1 & R_1 \ e^{jeta_2} & e^{jlpha_2} & R_2 \ e^{jeta_3} & e^{jlpha_3} & R_3 \end{bmatrix}$$

The determinant can be simplified to $A + Be^{j\beta_2} + Ce^{j\beta_3} = 0$

Where

$$A = R_3 e^{j\alpha_2} - R_2 e^{j\alpha_3}$$
$$B = R_1 e^{j\alpha_3} - R_3$$
$$C = R_2 - R_1 e^{j\alpha_2}$$

Solving the real and imaginary part of the equation we get

$$\beta_3 = 2 \arctan\left(\frac{K_2 \pm \sqrt{K_1^2 + K_2^2 - K_3^2}}{K_1 + K_3}\right)$$
$$\beta_2 = \arctan\left[\frac{-(A_3 \sin \beta_3 + A_2 \cos \beta_3 + A_4)}{-(A_5 \sin \beta_3 + A_3 \cos \beta_3 + A_6)}\right]$$

Ignore the solution where $\beta_2 = \alpha_2$ and $\beta_3 = \alpha_3$

1st Dyade: WZ – Solution Constants

$$K_{1} = A_{2}A_{4} + A_{3}A_{6} \qquad A_{1} = -C_{3}^{2} - C_{4}^{2} \qquad A_{2} = C_{3}C_{6} - C_{4}C_{5}$$

$$K_{2} = A_{3}A_{4} + A_{5}A_{6} \qquad A_{3} = -C_{4}C_{6} - C_{3}C_{5} \qquad A_{4} = C_{2}C_{3} + C_{1}C_{4}$$

$$K_{3} = \frac{\left(A_{1}^{2} - A_{2}^{2} - A_{3}^{2} - A_{4}^{2} - A_{6}^{2}\right)}{2} \qquad A_{5} = C_{4}C_{5} - C_{3}C_{6} \qquad A_{6} = C_{1}C_{3} - C_{2}C_{4}$$

$$C_{1} = R_{3} \cos(\alpha_{2} + \zeta_{3}) - R_{2} \cos(\alpha_{3} + \zeta_{2})$$

$$C_{2} = R_{3} \sin(\alpha_{2} + \zeta_{3}) - R_{2} \sin(\alpha_{3} + \zeta_{2})$$

$$C_{3} = R_{1} \cos(\alpha_{3} + \zeta_{1}) - R_{3} \cos \zeta_{3}$$

$$C_{4} = -R_{1} \sin(\alpha_{3} + \zeta_{1}) + R_{3} \sin \zeta_{3}$$

$$C_{5} = R_{1} \cos(\alpha_{2} + \zeta_{1}) - R_{2} \cos \zeta_{2}$$

$$C_{6} = -R_{1} \sin(\alpha_{2} + \zeta_{1}) + R_{2} \sin \zeta_{2}$$

Use the following vector loop equation to solve for W and Z

 $W_2 + Z_2 - P_{21} - Z_1 - W_1 = 0$ $W_3 + Z_3 - P_{31} - Z_1 - W_1 = 0$

Unknowns

 $W_{1_x} = w \cos \theta \qquad Z_{1_x} = z \cos \phi$ $W_{1_y} = w \sin \theta \qquad Z_{1_y} = z \sin \phi$

Slide 9 of 33

Take the real and imaginary components of both equations $AW_{1_x} - BW_{1_y} + CZ_{1_x} - DZ_{1_y} = E$ $FW_{1_x} - GW_{1_y} + HZ_{1_x} - KZ_{1_y} = L$ $BW_{1_x} + AW_{1_y} + DZ_{1_x} + CZ_{1_y} = M$ $GW_{1_x} + FW_{1_y} + KZ_{1_x} + HZ_{1_y} = N$

Where

 $A = \cos \beta_2 - 1 \qquad B = \sin \beta_2 \qquad C = \cos \alpha_2 - 1$ $D = \sin \alpha_2 \qquad E = p_{21} \cos \delta_2 \qquad F = \cos \beta_3 - 1$ $G = \sin \beta_3 \qquad H = \cos \alpha_3 - 1 \qquad K = \sin \alpha_3$ $L = p_{31} \cos \delta_3 \qquad M = p_{21} \sin \delta_2 \qquad N = p_{31} \sin \delta_3$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 10 of 33

Solve the system of equations using matrices

$$\begin{bmatrix} A & -B & C & -D \\ F & -G & H & -K \\ B & A & D & C \\ G & F & K & H \end{bmatrix} \times \begin{bmatrix} W_{1_x} \\ W_{1_y} \\ Z_{1_x} \\ Z_{1_y} \end{bmatrix} = \begin{bmatrix} E \\ L \\ M \\ N \end{bmatrix}$$

The matrix solution will give the solution to vectors W and Z.

Redo the same procedure for vector U and S

Solution Summary

$$\beta_{3} = 2 \arctan\left(\frac{K_{2} \pm \sqrt{K_{1}^{2} + K_{2}^{2} - K_{3}^{2}}}{K_{1} + K_{3}}\right)$$
$$\beta_{2} = \arctan\left[\frac{-(A_{3} \sin \beta_{3} + A_{2} \cos \beta_{3} + A_{4})}{-(A_{5} \sin \beta_{3} + A_{3} \cos \beta_{3} + A_{6})}\right]$$

$$\begin{bmatrix} A & -B & C & -D \\ F & -G & H & -K \\ B & A & D & C \\ G & F & K & H \end{bmatrix} \times \begin{bmatrix} W_{1_x} \\ W_{1_y} \\ Z_{1_x} \\ Z_{1_y} \end{bmatrix} = \begin{bmatrix} E \\ L \\ M \\ N \end{bmatrix}$$

Example: Problem: 5-11 p.255

Design a linkage to carry the body in the figure below through the three positions P1, P2 and P3 at the angles shown in the figure. Use analytical synthesis and design it for the fixed pivots shown.

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 13 of 33 🔔 LAU

Determine the angle changes between precision points from the body angles given.

 δ_3

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 14 of 33

determine the magnitudes of \mathbf{R}_1 , \mathbf{R}_2 , and \mathbf{R}_3 and their x and y components.

$R_{Ix} \coloneqq -O_{2x}$	$R_{lx} = 2.164$	$R_{1y} \coloneqq -O_{2y}$	$R_{Iy} = 1.260$
$R_{2x} \coloneqq R_{1x} + P_{21x}$		$R_{2x} = 0.928$	
$R_{2y} \coloneqq R_{1y} + P_{21y}$		$R_{2y} = 3.398$	
$R_{3x} \coloneqq R_{1x} + P_{31x}$		$R_{3x} = -0.336$	
$R_{3y} \coloneqq R_{1y} + P_{31y}$		$R_{3y} = 4.191$	
$R_I := \sqrt{R_{Ix}^2 + R_{Iy}^2}$		$R_I = 2.504$	
$R_2 := \sqrt{R_{2x}^2 + R_{2y}^2}$		$R_2 = 3.522$	
$R_{3} := \sqrt{R_{3x}^2 + R_{3y}^2}$		$R_3 = 4.204$	

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 15 of 33

determine the angles that $\mathbf{R}_1, \mathbf{R}_2$, and \mathbf{R}_3 make with the x axis.

- $\zeta_1 := atan2(R_{1x}, R_{1y}) \qquad \qquad \zeta_1 = 30.210 \, deg$
- $\zeta_2 := atan2(R_{2x}, R_{2y}) \qquad \qquad \zeta_2 = 74.725 \ deg$

$$\zeta_3 := atan2(R_{3x}, R_{3y})$$
 $\zeta_3 = 94.584 \, deg$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 16 of 33

Solve for β_2 and β_3

$$C_{1} \coloneqq R_{3} \cdot \cos(\alpha_{2} + \zeta_{3}) - R_{2} \cdot \cos(\alpha_{3} + \zeta_{2})$$

$$C_{2} \coloneqq R_{3} \cdot \sin(\alpha_{2} + \zeta_{3}) - R_{2} \cdot \sin(\alpha_{3} + \zeta_{2})$$

$$C_{3} \coloneqq R_{1} \cdot \cos(\alpha_{3} + \zeta_{1}) - R_{3} \cdot \cos(\zeta_{3})$$

$$C_{4} \coloneqq -R_{1} \cdot \sin(\alpha_{3} + \zeta_{1}) + R_{3} \cdot \sin(\zeta_{3})$$

$$C_{5} \coloneqq R_{1} \cdot \cos(\alpha_{2} + \zeta_{1}) - R_{2} \cdot \cos(\zeta_{2})$$

$$C_{6} \coloneqq -R_{1} \cdot \sin(\alpha_{2} + \zeta_{1}) + R_{2} \cdot \sin(\zeta_{2})$$

Solve for β_2 and β_3

 $A_1 \coloneqq -C_3^2 - C_4^2$ $A_1 = -44.206$ $A_2 \coloneqq C_3 \cdot C_6 - C_4 \cdot C_5$ $A_2 = -2.046$ $A_3 \coloneqq -C_4 \cdot C_6 - C_3 \cdot C_5$ $A_3 = -32.399$ $A_4 \coloneqq C_2 \cdot C_3 + C_1 \cdot C_4$ $A_4 = 6.937$ $A_5 \coloneqq C_4 C_5 - C_3 C_6$ $A_5 = 2.046$ $A_6 \coloneqq C_1 \cdot C_3 - C_2 \cdot C_4$ $A_6 = -23.911$ $K_1 \coloneqq A_7 A_4 + A_3 A_6$ $K_1 = 760.497$ $K_2 \coloneqq A_3 \cdot A_4 + A_5 \cdot A_6$ $K_2 = -273.669$ $K_3 \coloneqq \frac{A_1^2 - A_2^2 - A_3^2 - A_4^2 - A_6^2}{2}$ $K_3 = 140.232$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 18 of 33

Solve for β_2 and β_3

$$\beta_{31} \coloneqq 2 \cdot atan \left(\frac{K_2 + \sqrt{K_1^2 + K_2^2 - K_3^2}}{K_1 + K_3} \right)$$
$$\beta_{32} \coloneqq 2 \cdot atan \left(\frac{K_2 - \sqrt{K_1^2 + K_2^2 - K_3^2}}{K_1 + K_3} \right)$$

The second value is the same as α_3 , so use the first value

$$\beta_{21} \coloneqq acos\left(\frac{A_5 \cdot sin(\beta_3) + A_3 \cdot cos(\beta_3) + A_6}{A_1}\right)$$
$$\beta_{22} \coloneqq asin\left(\frac{A_3 \cdot sin(\beta_3) + A_2 \cdot cos(\beta_3) + A_4}{A_1}\right)$$

Since both values are the same,

Slide 19 of 33

iY

 P_1

 \mathbf{R}_1

ζ3

 ζ_2

ζ1

 δ_2

P₂₁

 \mathbf{Z}_1

Repeat steps 2, 3, and 4 for the right-hand dyad to find γ_1 and γ_2 .

$R_{lx} \coloneqq -O_{4x}$	$R_{lx} = -2.190$
$R_{ly} \coloneqq -O_{4y}$	$R_{Iy} = 1.260$
$R_{2x} \coloneqq R_{1x} + P_{21x}$	$R_{2x} = -3.426$
$R_{2y} \coloneqq R_{1y} + P_{21y}$	$R_{2y} = 3.398$
$R_{3x} \coloneqq R_{1x} + P_{31x}$	$R_{3x} = -4.690$
$R_{3y} \coloneqq R_{1y} + P_{31y}$	$R_{3y} = 4.191$
$R_I := \sqrt{R_{Ix}^2 + R_{Iy}^2}$	$R_{I} = 2.527$
$R_2 := \sqrt{R_{2x}^2 + R_{2y}^2}$	$R_2 = 4.825$
$R_{\mathcal{J}} := \sqrt{R_{\mathcal{J}_{\mathcal{X}}}^2 + R_{\mathcal{J}_{\mathcal{Y}}}^2}$	$R_3 = 6.290$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 20 of 33

determine the angles that $\mathbf{R}_1, \mathbf{R}_2$, and \mathbf{R}_3 make with the x axis.

 $\zeta_{1} := atan2(R_{1x}, R_{1y})$ $\zeta_{2} := atan2(R_{2x}, R_{2y})$ $\zeta_{3} := atan2(R_{3x}, R_{3y})$ $\zeta_{1} = 150.086 \ deg$ $\zeta_{2} = 135.235 \ deg$

 $\zeta_3=138.216~deg$

Slide 21 of 33

Solve for γ_2 and γ_3

$C_1 \coloneqq R_3 \cdot \cos(\alpha_2 + \zeta_3) - R_2 \cdot \cos(\alpha_3 + \zeta_2)$	$C_{l} = -2.380$
$C_2 \coloneqq R_3 \cdot sin(\alpha_2 + \zeta_3) - R_2 \cdot sin(\alpha_3 + \zeta_2)$	$C_2 = 3.298$
$C_3 \coloneqq R_I \cdot \cos(\alpha_3 + \zeta_1) - R_3 \cdot \cos(\zeta_3)$	$C_3 = 6.304$
$C_4 := -R_1 \cdot sin(\alpha_3 + \zeta_1) + R_3 \cdot sin(\zeta_3)$	$C_4 = 2.247$
$C_5 \coloneqq R_1 \cdot \cos(\alpha_2 + \zeta_1) - R_2 \cdot \cos(\zeta_2)$	$C_5 = 3.532$
$C_{6} \coloneqq -R_{1} \cdot sin(\alpha_{2} + \zeta_{1}) + R_{2} \cdot sin(\zeta_{2})$	$C_{\vec{o}} = 0.874$

Slide 22 of 33

LAU

$A_1 \coloneqq -C_3^2 - C_4^2$	$A_1 = -44.796$
$A_2 \coloneqq C_3 \cdot C_6 - C_4 \cdot C_5$	$A_2 = -2.431$
$A_3 \coloneqq -C_4 \cdot C_6 - C_3 \cdot C_5$	$A_3 = -24.233$
$A_4 \coloneqq C_2 C_3 + C_1 C_4$	$A_4 = 15.441$
$A_5 \coloneqq C_{4}C_5 - C_3 \cdot C_6$	$A_5 = 2.431$
$A_6 \coloneqq C_1 \cdot C_3 - C_2 \cdot C_4$	$A_{6} = -22.414$
$K_1 \coloneqq A_2 A_4 + A_3 A_6$	$K_{l} = 505.612$
$K_2 \coloneqq A_3 \cdot A_4 + A_5 \cdot A_6$	$K_2 = -428.679$
$K_{3} \coloneqq \frac{A_{1}^{2} - A_{2}^{2} - A_{3}^{2} - A_{4}^{2} - A_{6}^{2}}{2}$	<i>K</i> ₃ = 336.363

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 23 of 33 🔝 LAU

$$\gamma_{31} := 2 \cdot atan \left(\frac{K_2 + \sqrt{K_1^2 + K_2^2 - K_3^2}}{K_1 + K_3} \right)$$

 $\gamma_{31} = 19.215 \, deg$

$$Y_{32} := 2 \cdot atan \left(\frac{K_2 - \sqrt{K_1^2 + K_2^2 - K_3^2}}{K_1 + K_3} \right)$$

 $\gamma_{32} = -99.800 \, deg$

The second value is the same as α_3 , so use the first value

 $\gamma_3 \coloneqq \gamma_{31}$

$$\gamma_{21} \coloneqq acos \left(\frac{A_5 \cdot sin(\gamma_3) + A_3 \cos(\gamma_3) + A_6}{A_1} \right) \qquad \gamma_{21} = 6.628 deg$$

$$\gamma_{22} \coloneqq asin \left(\frac{A_3 \cdot sin(\gamma_3) + A_2 \cdot \cos(\gamma_3) + A_4}{A_1} \right) \qquad \gamma_{22} = -6.628 deg$$

Since γ_2 is not in the first quadrant,

 $\gamma_2 \coloneqq \gamma_{22}$

Slide 24 of 33

Solve for the linkage vectors as described on slide 11. Start by finding the magnitudes of vectors P_{21} and P_{31} and its angles:

Slide 25 of 33

$$p_{21} \coloneqq \sqrt{P_{21x}^{2} + P_{21y}^{2}} \qquad p_{21} = 2.470$$

$$\delta_{2} \coloneqq atan2 (P_{21x}, P_{21y}) \qquad \delta_{2} = 120.033 \ deg$$

$$p_{31} \coloneqq \sqrt{P_{31x}^{2} + P_{31y}^{2}} \qquad p_{31} = 3.852$$

$$\delta_{3} \coloneqq atan2 (P_{31x}, P_{31y}) \qquad \delta_{3} = 130.463 \ deg$$

Evaluate terms in the WZ coefficient matrix

 $A := \cos(\beta_2) - 1 \qquad B := \sin(\beta_2) \qquad C := \cos(\alpha_2) - 1$ $D := \sin(\alpha_2) \qquad E := p_{21} \cdot \cos(\delta_2) \qquad F := \cos(\beta_3) - 1$ $G := \sin(\beta_3) \qquad H := \cos(\alpha_3) - 1 \qquad K := \sin(\alpha_3)$ $L := p_{31} \cdot \cos(\delta_3) \qquad M := p_{21} \cdot \sin(\delta_2) \qquad N := p_{31} \cdot \sin(\delta_3)$ $AA := \begin{pmatrix} A & -B & C & -D \\ F & -G & H & -K \\ B & A & D & C \\ G & F & K & H \end{pmatrix} \qquad CC := \begin{pmatrix} E \\ L \\ M \\ N \end{pmatrix} \qquad \begin{pmatrix} WIx \\ WIy \\ ZIx \\ ZIy \end{pmatrix} := AA^{-1} \cdot CC$

MEE341 – Lecture 13: 3 Positions Analytical Synthesis

Slide 26 of 33 🔝 LAU

The components of the W and Z vectors are

Wlx = 2.915 Wly = 1.702 Zlx = -0.751 Zly = -0.442

And the length of link 2 is

$$w := \sqrt{Wlx^2 + Wly^2} \qquad \qquad w = 3.376$$

Evaluate terms in the US coefficient matrix

$$AA := \begin{pmatrix} A' & -B' & C & -D \\ F' & -G' & H & -K \\ B' & A' & D & C \\ G' & F' & K & H \end{pmatrix} \qquad CC := \begin{pmatrix} E \\ L \\ M \\ N \end{pmatrix} \qquad \begin{pmatrix} Ulx \\ Uly \\ Slx \\ Sly \end{pmatrix} := AA^{-1} \cdot CC$$

Slide 28 of 33

The components of the U and S vectors are

Ulx = -1.371 Uly = 3.634 Slx = -0.819 Sly = -2.374

And the length of link 4 is

$$u \coloneqq \sqrt{U1x^2 + U1y^2} \qquad \qquad u = 3.884$$

Solving for links 3 and 1

Vlx := Zlx - Slx Vlx = 0.068 Vly := Zly - Sly Vly = 1.932The length of link 3 is: $v := \sqrt{Vlx^2 + Vly^2}$ v = 1.933 Glx := Wlx + Vlx - Ulx Glx = 4.354 Gly := Wly + Vly - Uly $Gly = -4.441 \times 10^{-15}$ The length of link 1 is: $g := \sqrt{Glx^2 + Gly^2}$ g = 4.354

Slide 30 of 33

Check the location of the fixed pivot points with respect to the global frame using the calculated vectors W1, Z1, U1, and S1

O2x := -Zlx - Wlx	O2x = -2.164
O2y := -Z1y - W1y	O2y = -1.260
O4x := -Slx - Ulx	O4x = 2.190
O4y := -Sly - Uly	O4y = -1.260

Determine the location of the coupler point with respect to point A and line AB.

Distance from A to P $z := \sqrt{Zlx^2 + Zly^2}$ z = 0.871 $r_P := z$ Angle BAP (δ_p) $s := \sqrt{Slx^2 + Sly^2}$ s = 2.511 $\psi := atan2(Slx, Sly)$ $\psi = 250.963 deg$ $\phi := atan2(Zlx, Zly)$ $\phi = 210.445 deg$ $\theta_3 := atan2(z \cdot cos(\phi) - s \cdot cos(\psi), z \cdot sin(\phi) - s \cdot sin(\psi))$ $\theta_3 = 87.994 deg$ $\delta_p := \phi - \theta_3$ $\delta_p = 122.451 deg$

Slide 32 of 33

Example Solution – Summary

DESIGN SUMMARY

Coupler point:	$r_P = 0.871$	$\delta_p = 122.451 \ deg$
Link 4:	u = 3.884	
Link 3:	v = 1.933	
Link 2:	w = 3.376	
Link 1:	g = 4.354	

VERIFICATION: The calculated values of g (length of the ground link) and of the coordinates of O_2 and O_4 give the same values as those on the problem statement, verifying that the calculated values for the other links and the coupler point are correct.

